
UT Web - Research - Zenoss and filesystem mount order

The Problem: Full file systems that are not full

Sometimes after a routine reboot, a UT Web system will see quasi-random "disk space threshold" events from Zenoss:

disk space threshold: 1820.9% used (-1.6TB free)

The "full" file system may be  , or a database file system. File system capacity remains the same but the usage numbers change to wildly oversized /boot
values.

Sometimes another reboot will reset the alert, and sometimes the device has to be remodeled in Zenoss. Some ITS services routinely include a remodel 
step after rebooting a system so it is sure to go "green".

This issue is observed most frequently on systems with additional file systems mounted - e.g. database servers, file servers, or systems that mount remote 
file systems.

Possible RCA: Indeterminate file system mount order due to parallel mounts

Debugging data from the SNMP agent shows that when a file system shows incorrect usage numbers in Zenoss after a reboot, its internal index number is 
not the same as when Zenoss shows the correct data.

This difference in index number is because the SNMP agent indexes file systems as they are found in s. Since  mounts file /proc/mount systemd
systems in parallel by default, it is a matter of sheer timing whether a file system is always in the same place in the mount list after a reboot.

When Zenoss retrieves a fresh round of data from the SNMP agent, it does not detect that the file systems have different index numbers, prompting the 
behavior we observe.

For example, if  and  exchange index numbers, /boot will look full because it doesn't have as much capacity as the database /boot /var/lib/mysql
filesystem.  will show a corresponding drop in usage at the same time./var/lib/mysql

Ideal solution: Zenoss detects index number changes

It seems that Zenoss could verify that file system mount point paths still match the index numbers that were observed during the most recent device 
modeling run. Then these index number changes would not matter.

In terms of where the responsibility lies for detecting these changes,  states that the file system index numbers only need to be stable between RFC 2790
one re-initialization of the agent to the next. The SNMP agent's behavior appears to be standards compliant in that respect.

   hrFSIndex OBJECT-TYPE
       SYNTAX     Integer32 (1..2147483647)
       MAX-ACCESS read-only
       STATUS     current
       DESCRIPTION
           "A unique value for each file system local to this
           host.  The value for each file system must remain
           constant at least from one re-initialization of the
           agent to the next re-initialization."
       ::= { hrFSEntry 1 }

Workaround: mount in explicit order using x-systemd.requires

Absent an update to Zenoss as suggested above, the -specific mount option  lets the system administrator (tediously) systemd x-systemd.requires
order file system mounts.

As documented in , local and remote file systems have different dependency targets. Local file systems generally land in the mount systemd.mount(5)
table before remote file systems, so a particular system may only exhibit index number swaps for the remote file systems.

For example, on a typical UT Web FUSE client we may only need to assure that  and  always mount in that order. So we /home/utweb /utweb/common
configure  to require  to be mounted by using  . This approach can be extended /home/utweb /utweb/common x-systemd.requires=/utweb/common
to the entire set of file systems if necessary.

# See the FSTAB section of systemd.mount(5) for details on the x-systemd.requires option
utweb-fs-z1-p03-gfs:/utweb_home        /home/utweb        glusterfs        defaults,_netdev,backup-volfile-
servers=utweb-fs-z1-p04-gfs,lru-limit=65536,invalidate-limit=131072,x-systemd.requires=/utweb/common        
0        0

https://datatracker.ietf.org/doc/html/rfc2790


Only about reboots

This workaround is only about annoying incorrect Zenoss disk threshold events after a normal reboot.

If a new file system is mounted or removed, that will affect the index numbers generated from the mount table. In that case the device should be 
remodeled in Zenoss to account for the changed configuration.

Appendix: File system index debug process

Modify  to direct debug messages with tokens starting with the string " " to  :/etc/sysconfig/snmpd fsys /var/log/snmpd

OPTIONS="-LS0d -Dfsys -Lf /var/log/snmpd -p /var/run/snmpd.pid"

Observe the index numbers assigned to file systems

fsys:path: Get filesystem entry (/utweb/common)
fsys:new: Create filesystem entry (index = 31)
--
fsys:path: Get filesystem entry (/home/utweb)
fsys:new: Create filesystem entry (index = 32)

The index numbers (e.g. 32 for ) conveniently match the output from :/home/utweb grep -n

$ grep -n /home/utweb /proc/mounts
32:utweb-fs-z1-p03-gfs:/utweb_home /home/utweb fuse.glusterfs rw,relatime,user_id=0,group_id=0,
default_permissions,allow_other,max_read=131072 0 0

Reboot the system until Zenoss is unhappy with it
Review  and  to observe the file systems now have different index numbers, e.g./var/log/snmpd /proc/mounts

fsys:path: Get filesystem entry (/home/utweb)
fsys:new: Create filesystem entry (index = 31)
--
fsys:path: Get filesystem entry (/utweb/common)
fsys:new: Create filesystem entry (index = 32)

Apply the  mount option to entries in  as desired, e.g.x-systemd.requires /etc/fstab

/dev/vg_rsnapshot/lv_rsnapshot        /utweb/rsnapshot        xfs        defaults,noatime,x-systemd.
requires=/home/utweb        1        2

Reboot the system to confirm the fstab entries
Remodel the device in Zenoss
Reboot the system multiple times
Confirm that the file system index numbers have become stable
Confirm that Zenoss shows correct file system usage
Revert  to the usual values/etc/systemd/snmpd

OPTIONS="-LS0-4d -Lf /dev/null -p /var/run/snmpd.pid"

Notes

Example  command to get the file system list from the local SNMP agent:snmpwalk



$ snmpwalk -v3 -l authPriv -u zenoss -a SHA -A 'APASSWD' -x AES -X 'XPASSWD' localhost
hrStorageTable
HOST-RESOURCES-MIB::hrStorageIndex.1 = INTEGER: 1
HOST-RESOURCES-MIB::hrStorageIndex.3 = INTEGER: 3
HOST-RESOURCES-MIB::hrStorageIndex.6 = INTEGER: 6
HOST-RESOURCES-MIB::hrStorageIndex.7 = INTEGER: 7
HOST-RESOURCES-MIB::hrStorageIndex.8 = INTEGER: 8
...

References

systemd.mount(5)
https://github.com/systemd/systemd/commit/3519d230c8bafe834b2dac26ace49fcfba139823
RFC 2790

https://github.com/systemd/systemd/commit/3519d230c8bafe834b2dac26ace49fcfba139823
https://datatracker.ietf.org/doc/html/rfc2790

	UT Web - Research - Zenoss and filesystem mount order

